847 research outputs found

    Acid treatment biasing to C/N, Ī“13C and Ī“15N of organic matter: A Molecular insight

    Get PDF
    (DIPPI-C) - Development of Isotopic Proxies for Palaeoenvironmental Interpretation: a Carbon PerspectiveIt is known that acid treatment methods employed to remove inorganic carbon (IC) from sample material prior to analysis for C/N, Ī“13C and Ī“15N cause non-linear, unpredictable biasing to the organic matter (OM) fraction. Consequently, measured C/N, Ī“13C and Ī“15N have an uncertainty much greater than instrument precision: uncertainties for C/N are reported in the range of 1 ā€“ 100, for Ī“13C in the range of 0.2 ā€“ 6.8 ā€° and for Ī“15N in the range of 0.2 ā€“ 1.5 ā€°, in both modern and palaeo environmental materials. Brodie et al (2011) extended this investigation to a down-core lake sedimentary archive (Lake Tianyang, South China) and noted the potential for uncertainties to preclude ā€œcommonā€ interpretations of the data (e.g., C/N values a s a n OM p rovenance tool; Ī“ 13C as a proxy for changes in C3 and C4 vegetation). It is evident that the size of uncertainty between sample horizons varies considerably implying a differential relative reaction to acid treatment down-core (i.e., as the type, relative amount and physical state of organic and inorganic components change). We are now investigating this biasing at the molecular level by employing 13C-NMR and GCIRMS techniques on a suite of modern and palaeo environmental materials and on a lake sedimentary archive. This will provide an important insight into the effect of acid treatment on organic compounds (i.e. removal from the sample, breakdown of compounds and partial removal) and associated isotopic fractionation. From an improved understanding of the type of compounds most susceptible to alteration/removal during the acid treatment processes it will be possible to consider refinements to the acid pre-treatment process and provide information on the relative down-core changes in those compounds susceptible to change (which we may be able to glean environmental information from).postprintThe 1st DIPPI-C Workshop, Durham, UK., 8-10 May 2012. In Abstract Bok of the 1st DIPPI-C Workshop, 2012, p. 1

    The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems

    Get PDF
    Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C=N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk 13C and sand content explaining 0.63 of the observed variability. The variation of 13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times ( ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in 13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations.However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. Thisstudy shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM. Ā© 2015, Copernicus Publications

    A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates.

    Full text link
    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery

    Effects of vessel traffic on relative abundance and behaviour of cetaceans : the case of the bottlenose dolphins in the Archipelago de La Maddalena, north-western Mediterranean sea

    Get PDF
    Acknowledgements This study was part of the Tursiops Project of the Dolphin Research Centre of Caprera, La Maddalena. Financial and logistical support was provided by the Centro Turistico Studentesco (CTS) and by the National Park of the Archipelago de La Maddalena. We thank the Natural Reserve of Bocche di Bonifacio for the support provided during data collection. The authors thank the numerous volunteers of the Caprera Dolphin Research Centre and especially Marco Ferraro, Mirko Ugo, Angela Pira and Maurizio Piras whose assistance during field observation and skills as a boat driver were invaluable.Peer reviewedPostprin

    Sequential Changes in Aberrant Crypt Foci and Lectin Expression in the Early and Late Stages of DMH-Induced Colon Carcinogenesis in Rats

    Get PDF

    Predictive utility of commercial grade technologies for assessing musculoskeletal injury risk in US Marine Corps Officer candidates

    Get PDF
    Recently, commercial grade technologies have provided black box algorithms potentially relating to musculoskeletal injury (MSKI) risk and functional movement deficits, in which may add value to a high-performance model. Thus, the purpose of this manuscript was to evaluate composite and component scores from commercial grade technologies associations to MSKI risk in Marine Officer Candidates. 689 candidates (Male candidates = 566, Female candidates = 123) performed counter movement jumps on SPARTAā„¢ force plates and functional movements (squats, jumps, lunges) in DARIā„¢ markerless motion capture at the start of Officer Candidates School (OCS). De-identified MSKI data was acquired from internal OCS reports for those who presented to the Physical Therapy department for MSKI treatment during the 10Ā weeks of training. Logistic regression analyses were conducted to validate the utility of the composite scores and supervised machine learning algorithms were deployed to create a population specific model on the normalized component variables in SPARTAā„¢ and DARIā„¢. Common MSKI risk factors (cMSKI) such as older age, slower run times, and females were associated with greater MSKI risk. Composite scores were significantly associated with MSKI, although the area under the curve (AUC) demonstrated poor discrimination (AUC = .55ā€“.57). When supervised machine learning algorithms were trained on the normalized component variables and cMSKI variables, the overall training models performed well, but when the training models were tested on the testing data the models classified MSKI ā€œby chanceā€ (testing AUC avg = .55ā€“.57) across all models. Composite scores and component population specific models were poor predictors of MSKI in candidates. While cMSKI, SPARTAā„¢, and DARIā„¢ models performed similarly, this study does not dismiss the use of commercial technologies but questions the utility of a singular screening task to predict MSKI over 10Ā weeks. Further investigations should evaluate occupation specific screening, serial measurements, and/or load exposure for creating MSKI risk models

    Mice have a transcribed L-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene

    Get PDF
    BACKGROUND: There are three pathways of L-threonine catabolism. The enzyme L-threonine aldolase (TA) has been shown to catalyse the conversion of L-threonine to yield glycine and acetaldehyde in bacteria, fungi and plants. Low levels of TA enzymatic activity have been found in vertebrates. It has been suggested that any detectable activity is due to serine hydroxymethyltransferase and that mammals lack a genuine threonine aldolase. RESULTS: The 7-exon murine L-threonine aldolase gene (GLY1) is located on chromosome 11, spanning 5.6 kb. The cDNA encodes a 400-residue protein. The protein has 81% similarity with the bacterium Thermotoga maritima TA. Almost all known functional residues are conserved between the two proteins including Lys242 that forms a Schiff-base with the cofactor, pyridoxal-5'-phosphate. The human TA gene is located at 17q25. It contains two single nucleotide deletions, in exons 4 and 7, which cause frame-shifts and a premature in-frame stop codon towards the carboxy-terminal. Expression of human TA mRNA was undetectable by RT-PCR. In mice, TA mRNA was found at low levels in a range of adult tissues, being highest in prostate, heart and liver. In contrast, serine/threonine dehydratase, another enzyme that catabolises L-threonine, is expressed very highly only in the liver. Serine dehydratase-like 1, also was most abundant in the liver. In whole mouse embryos TA mRNA expression was low prior to E-15 increasing more than four-fold by E-17. CONCLUSION: Mice, the western-clawed frog and the zebrafish have transcribed threonine aldolase/GLY1 genes, but the human homolog is a non-transcribed pseudogene. Serine dehydratase-like 1 is a putative L-threonine catabolising enzyme

    Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination.

    Full text link
    Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved 'horizontal ice core' from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise
    • ā€¦
    corecore